Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 877
Filter
1.
Sci Total Environ ; 926: 172027, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38552982

ABSTRACT

Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.


Subject(s)
Air Pollutants , Lung Injury , Male , Mice , Animals , Lung Injury/chemically induced , Air Pollutants/toxicity , Air Pollutants/metabolism , Tryptophan , Multiomics , Spermidine/metabolism , Spermidine/pharmacology , Lung , Particulate Matter/toxicity , Particulate Matter/metabolism , Guanosine/metabolism , Guanosine/pharmacology , Hypoxanthines/metabolism , Hypoxanthines/pharmacology
2.
J Ethnopharmacol ; 325: 117817, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38316217

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps sobolifera (CS) has been traditionally utilized as an ethnic remedy for various health conditions, including chronic kidney diseases, anti-fatigue interventions, and management of chronic inflammation. Notably, CS is recognized for its substantial content of bioactive compounds, among which nucleosides prominently feature as constituents with diverse therapeutic advantages. AIM OF THE STUDY: This study aims to investigate the effects of CS on testosterone secretion in Leydig cells and explore the underlying mechanism. MATERIALS AND METHODS: Leydig cells were isolated from rat testes to establish a primary rat Leydig cells model. Cell proliferation and testosterone secretion were assessed via the methyl-piperidino-pyrazole (MTT) assay and enzyme-linked immunosorbent assay (ELISA), respectively. Samples earmarked for RNA sequencing (RNA-Seq) analysis facilitated the identification of significantly differentially expressed genes (DEGs), and we conducted Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and enrichment analyses. The veracity of our findings was validated through quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. RESULTS: The results showed that CS and guanosine could promote Leydig cell proliferation and bolster testosterone secretion. Our integrative analysis of metabolomics and transcriptomics has unveiled the potential mechanisms governing testosterone synthesis. Specifically, metabolomics has illuminated striking correlations within cholesterol metabolism, and bile secretion. Concurrently, transcriptomics has underscored the pivotal roles played by the cyclic adenosine monophosphate (cAMP) signaling pathway and steroid hormone biosynthesis. Furthermore, our investigation has demonstrated CS's aptitude in elevating the expression of proteins and genes. Notably, our findings have elucidated that these effects can be mitigated by protein kinase A (PKA) and adenylate cyclase (AC) specific inhibitors. CONCLUSION: This study delineates the cAMP-PKA pathways as plausible mechanisms underpinning the testosterone-enhancing properties of CS, with guanosine emerging as a fundamental bioactive constituent.


Subject(s)
Hypocreales , Leydig Cells , Testosterone , Male , Rats , Animals , Testosterone/metabolism , Multiomics , Cyclic AMP/metabolism , Guanosine/metabolism , Guanosine/pharmacology
3.
Biol Pharm Bull ; 47(1): 14-22, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37880111

ABSTRACT

Though the physiological effects of adenosine and adenine nucleotides on purinergic receptors in cancer cells have been well studied, the influence of extracellular guanosine and guanine nucleotides on breast cancer cells remains unclear. Here, we show that extracellular guanosine and guanine nucleotides decrease the viability and proliferation of human breast cancer SKBR-3 cells. Treatment with guanosine or guanine nucleotides increased mitochondrial production of reactive oxygen species (ROS), and modified the cell cycle. Guanosine-induced cell death was suppressed by treatment with adenosine or the equilibrium nucleoside transporter (ENT) 1/2 inhibitor dipyridamole, but was not affected by adenosine receptor agonists or antagonists. These results suggest that guanosine inhibits adenosine uptake through ENT1/2, but does not antagonize adenosine receptors. In contrast, guanosine triphosphate (GTP)-induced cell death was suppressed not only by adenosine and dipyridamole, but also by the A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), suggesting that GTP-induced cell death is mediated in part by an antagonistic effect on adenosine A1 receptor. Thus, both guanosine and GTP induce apoptosis of breast cancer cells, but via at least partially different mechanisms.


Subject(s)
Breast Neoplasms , Guanine Nucleotides , Humans , Female , Guanine Nucleotides/metabolism , Guanine Nucleotides/pharmacology , Guanosine/pharmacology , Breast Neoplasms/drug therapy , Guanosine Triphosphate/pharmacology , Adenosine/pharmacology , Adenosine/metabolism , Dipyridamole
4.
J Immunol ; 212(1): 143-153, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37938074

ABSTRACT

Recent evidence indicates that specific types of nuclear acids, including guanosine and its derivatives, act as natural ligands for TLR7. This led us to hypothesize that purine nucleoside phosphorylase inhibitors not only can induce apoptosis of T cells but also can lead to TLR7 activation by accumulation of guanine nucleosides, in particular under systemic inflammation, where damaged tissues release a large amount of nucleotides. We demonstrate in the present study that a purine nucleoside phosphorylase inhibitor, forodesine, can reduce the disease severity and prolong the survival in a xenogeneic mouse model of graft-versus-host disease (GVHD). Guanine nucleosides were undetectable in mice during GVHD but increased significantly following forodesine treatment. Our in vitro experiments showed that forodesine enhanced guanosine-mediated cytokine production from APCs, including alveolar macrophages and plasmacytoid dendritic cells, through TLR7 signaling. Forodesine also enhanced Ag-presenting capacity, as demonstrated by increased CD8+ T cell proliferation and higher secretion of IFN-γ and IL-12p40 in an MLR with plasmacytoid dendritic cells. Furthermore, forodesine stimulated IFN-γ production from activated T cells in the presence of a low concentration of guanosine while inhibiting their proliferation and inducing apoptotic cell death. Although forodesine ameliorated GVHD severity, mice treated with forodesine showed significantly higher levels of multiple proinflammatory cytokines and chemokines in plasma, suggesting in vivo upregulation of TLR7 signaling. Our study suggests that forodesine may activate a wide range of immune cells, including T cells, through TLR7 stimulation while inhibiting GVHD by inducing apoptosis of T cells, after allogeneic hematopoietic stem cell transplant.


Subject(s)
Graft vs Host Disease , Purine-Nucleoside Phosphorylase , Animals , Mice , Toll-Like Receptor 7 , Guanosine/pharmacology , Enzyme Inhibitors/pharmacology , Immunity , Guanine
6.
Microbiol Spectr ; 11(4): e0056623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409948

ABSTRACT

Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 µM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.


Subject(s)
Monkeypox virus , Mycophenolic Acid , Guanosine/pharmacology , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mycophenolic Acid/pharmacology , Trifluridine , Monkeypox virus/drug effects
7.
J Psychiatr Res ; 164: 296-303, 2023 08.
Article in English | MEDLINE | ID: mdl-37392719

ABSTRACT

Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.


Subject(s)
Depression , Neuroprotective Agents , Mice , Animals , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Lipopolysaccharides/pharmacology , Fluoxetine/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Guanosine/pharmacology , Neuroprotective Agents/pharmacology , Behavior, Animal , Hippocampus/metabolism
8.
Biochem Biophys Res Commun ; 673: 67-72, 2023 09 17.
Article in English | MEDLINE | ID: mdl-37356147

ABSTRACT

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer-related death. Drug therapy for breast cancer is currently selected based on the subtype classification; however, many anticancer drugs are highly cytotoxic. Since intracellular levels of GTP are elevated in many cancer cells that undergo a specific cell proliferation cycle, GTP has potential as a target for cancer therapy. The present study focused on nucleosides and nucleotides and examined intracellular GTP-dependent changes in cell proliferation rates in normal (MCF-12A) and cancer (MCF-7) breast cell lines. Decreased cell proliferation due to a reduction in intracellular GTP levels by mycophenolic acid (MPA), an inosine monophosphate dehydrogenase inhibitor, was observed in both cell lines. The inhibitory effects of MPA on cell proliferation were suppressed when it was applied in combination with Guanosine (Guo), a substrate for GTP salvage synthesis, while the single exposure to Guo suppressed the proliferation of MCF-7 cells only. Although the underlying mechanisms remain unclear, since the inhibitory effects of Guo on cell proliferation did not correlate with GTP or ATP intracellular levels or the GTP/ATP ratio, there may be another cause besides GTP metabolism. Guo inhibited the proliferation of MCF-7, a human breast cancer cell line, but not MCF-12A, a human normal breast cell line. Further studies are needed to investigate the potential of applying Guo as a target for the development of a novel cancer treatment system.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Guanosine/pharmacology , Breast Neoplasms/drug therapy , Mycophenolic Acid/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , MCF-7 Cells , Guanosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology
9.
Chem Biol Interact ; 375: 110440, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36878458

ABSTRACT

Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.05 mg/kg, but not 0.01 mg/kg, p. o.) was effective in producing an antidepressant-like effect and protecting hippocampal and prefrontocortical slices against glutamate-induced damage. Our results also unveiled that ketamine (1 mg/kg, but not 0.1 mg/kg, i. p, an NMDA receptor antagonist) effectively elicited antidepressant-like actions and protected hippocampal and prefrontocortical slices against glutamatergic toxicity. Furthermore, the combined administration of sub-effective doses of guanosine (0.01 mg/kg, p. o.) with ketamine (0.1 mg/kg, i. p.) promoted an antidepressant-like effect and augmented glutamine synthetase activity and GLT-1 immunocontent in the hippocampus, but not in the prefrontal cortex. Our results also showed that the combination of sub-effective doses of ketamine and guanosine, at the same protocol schedule that exhibited an antidepressant-like effect, effectively abolished glutamate-induced damage in hippocampal and prefrontocortical slices. Our in vitro results reinforce that guanosine, ketamine, or sub-effective concentrations of guanosine plus ketamine protect against glutamate exposure by modulating glutamine synthetase activity and GLT-1 levels. Finally, molecular docking analysis suggests that guanosine might interact with NMDA receptors at the ketamine or glycine/d-serine co-agonist binding sites. These findings provide support for the premise that guanosine has antidepressant-like effects and should be further investigated for depression management.


Subject(s)
Ketamine , Neuroprotective Agents , Animals , Mice , Amino Acid Transport System X-AG/metabolism , Amino Acid Transport System X-AG/pharmacology , Antidepressive Agents/pharmacology , Depression/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamate-Ammonia Ligase/pharmacology , Glutamic Acid/pharmacology , Guanosine/pharmacology , Guanosine/metabolism , Hippocampus , Ketamine/pharmacology , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Excitatory Amino Acid Transporter 2
10.
Antiviral Res ; 212: 105574, 2023 04.
Article in English | MEDLINE | ID: mdl-36905944

ABSTRACT

AT-752 is a guanosine analogue prodrug active against dengue virus (DENV). In infected cells, it is metabolized into 2'-methyl-2'-fluoro guanosine 5'-triphosphate (AT-9010) which inhibits RNA synthesis in acting as a RNA chain terminator. Here we show that AT-9010 has several modes of action on DENV full-length NS5. AT-9010 does not inhibit the primer pppApG synthesis step significantly. However, AT-9010 targets two NS5-associated enzyme activities, the RNA 2'-O-MTase and the RNA-dependent RNA polymerase (RdRp) at its RNA elongation step. Crystal structure and RNA methyltransferase (MTase) activities of the DENV 2 MTase domain in complex with AT-9010 at 1.97 Å resolution shows the latter bound to the GTP/RNA-cap binding site, accounting for the observed inhibition of 2'-O but not N7-methylation activity. AT-9010 is discriminated ∼10 to 14-fold against GTP at the NS5 active site of all four DENV1-4 NS5 RdRps, arguing for significant inhibition through viral RNA synthesis termination. In Huh-7 cells, DENV1-4 are equally sensitive to AT-281, the free base of AT-752 (EC50 ≈ 0.50 µM), suggesting broad spectrum antiviral properties of AT-752 against flaviviruses.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/drug therapy , Dengue Virus/physiology , Guanosine/pharmacology , Guanosine/metabolism , Guanosine Triphosphate/metabolism , RNA, Viral/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
11.
mBio ; 14(1): e0247822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36507833

ABSTRACT

The purine-derived signaling molecules c-di-AMP and (p)ppGpp control mecA/PBP2a-mediated ß-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA) raise the possibility that purine availability can control antibiotic susceptibility. Consistent with this, exogenous guanosine and xanthosine, which are fluxed through the GTP branch of purine biosynthesis, were shown to significantly reduce MRSA ß-lactam resistance. In contrast, adenosine (fluxed to ATP) significantly increased oxacillin resistance, whereas inosine (which can be fluxed to ATP and GTP via hypoxanthine) only marginally increased oxacillin susceptibility. Furthermore, mutations that interfere with de novo purine synthesis (pur operon), transport (NupG, PbuG, PbuX) and the salvage pathway (DeoD2, Hpt) increased ß-lactam resistance in MRSA strain JE2. Increased resistance of a nupG mutant was not significantly reversed by guanosine, indicating that NupG is required for guanosine transport, which is required to reduce ß-lactam resistance. Suppressor mutants resistant to oxacillin/guanosine combinations contained several purine salvage pathway mutations, including nupG and hpt. Guanosine significantly increased cell size and reduced levels of c-di-AMP, while inactivation of GdpP, the c-di-AMP phosphodiesterase negated the impact of guanosine on ß-lactam susceptibility. PBP2a expression was unaffected in nupG or deoD2 mutants, suggesting that guanosine-induced ß-lactam susceptibility may result from dysfunctional c-di-AMP-dependent osmoregulation. These data reveal the therapeutic potential of purine nucleosides, as ß-lactam adjuvants that interfere with the normal activation of c-di-AMP are required for high-level ß-lactam resistance in MRSA. IMPORTANCE The clinical burden of infections caused by antimicrobial resistant (AMR) pathogens is a leading threat to public health. Maintaining the effectiveness of existing antimicrobial drugs or finding ways to reintroduce drugs to which resistance is widespread is an important part of efforts to address the AMR crisis. Predominantly, the safest and most effective class of antibiotics are the ß-lactams, which are no longer effective against methicillin-resistant Staphylococcus aureus (MRSA). Here, we report that the purine nucleosides guanosine and xanthosine have potent activity as adjuvants that can resensitize MRSA to oxacillin and other ß-lactam antibiotics. Mechanistically, exposure of MRSA to these nucleosides significantly reduced the levels of the cyclic dinucleotide c-di-AMP, which is required for ß-lactam resistance. Drugs derived from nucleotides are widely used in the treatment of cancer and viral infections highlighting the clinical potential of using purine nucleosides to restore or enhance the therapeutic effectiveness of ß-lactams against MRSA and potentially other AMR pathogens.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Purine Nucleosides/metabolism , Purine Nucleosides/pharmacology , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Oxacillin/pharmacology , beta-Lactams/pharmacology , Monobactams/metabolism , Monobactams/pharmacology , Guanosine/metabolism , Guanosine/pharmacology , Adenosine Triphosphate/metabolism , Guanosine Triphosphate/metabolism , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , beta-Lactam Resistance/genetics
12.
Purinergic Signal ; 19(2): 387-399, 2023 06.
Article in English | MEDLINE | ID: mdl-36166131

ABSTRACT

Guanosine has been considered a promising candidate for antidepressant responses, but if this nucleoside could modulate adenosine A1 (A1R) and A2A (A2AR) receptors to exert antidepressant-like actions remains to be elucidated. This study investigated the role of A1R and A2AR in the antidepressant-like response of guanosine in the mouse tail suspension test and molecular interactions between guanosine and A1R and A2AR by docking analysis. The acute (60 min) administration of guanosine (0.05 mg/kg, p.o.) significantly decreased the immobility time in the tail suspension test, without affecting the locomotor performance in the open-field test, suggesting an antidepressant-like effect. This behavioral response was paralleled with increased A1R and reduced A2AR immunocontent in the hippocampus, but not in the prefrontal cortex, of mice. Guanosine-mediated antidepressant-like effect was not altered by the pretreatment with caffeine (3 mg/kg, i.p., a non-selective adenosine A1R/A2AR antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX - 2 mg/kg, i.p., a selective adenosine A1R antagonist), or 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385 - 1 mg/kg, i.p., a selective adenosine A2AR antagonist). However, the antidepressant-like response of guanosine was completely abolished by adenosine (0.5 mg/kg, i.p., a non-selective adenosine A1R/A2AR agonist), N-6-cyclohexyladenosine (CHA - 0.05 mg/kg, i.p., a selective adenosine A1 receptor agonist), and N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA - 0.1 mg/kg, i.p., a selective adenosine A2A receptor agonist). Finally, docking analysis also indicated that guanosine might interact with A1R and A2AR at the adenosine binding site. Overall, this study reinforces the antidepressant-like of guanosine and unveils a previously unexplored modulation of the modulation of A1R and A2AR in its antidepressant-like effect.


Subject(s)
Adenosine , Guanosine , Mice , Animals , Guanosine/pharmacology , Caffeine , Antidepressive Agents/pharmacology , Adenosine A2 Receptor Agonists , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism
13.
Pflugers Arch ; 474(11): 1133-1145, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36048287

ABSTRACT

Guanosine (GUO), widely considered a key signaling mediator, is implicated in the regulation of several cellular processes. While its interaction with neural membranes has been described, GUO still is an orphan neuromodulator. It has been postulated that GUO may eventually interact with potassium channels and adenosine (ADO) receptors (ARs), both particularly important for the control of cellular excitability. Accordingly, here, we investigated the effects of GUO on the bioelectric activity of human neuroblastoma SH-SY5Y cells by whole-cell patch-clamp recordings. We first explored the contribution of voltage-dependent K+ channels and, besides this, the role of ARs in the regulation of GUO-dependent cellular electrophysiology. Our data support that GUO is able to specifically modulate K+-dependent outward currents over cell membranes. Importantly, administering ADO along with GUO potentiates its effects. Overall, these results suggested that K+ outward membrane channels may be targeted by GUO with an implication of  ADO receptors in SH-SY5Y cells, but also support the hypothesis of a functional interaction of the two ligands. The present research runs through the leitmotif of the deorphanization of GUO, adding insight on the interplay with adenosinergic signaling and suggesting GUO as a powerful modulator of SH-SY5Y excitability.


Subject(s)
Guanosine , Neuroblastoma , Adenosine , Guanosine/pharmacology , Humans , Ligands , Neuroblastoma/metabolism , Potassium Channels , Receptors, Purinergic P1/metabolism
14.
J Mol Model ; 28(10): 291, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36063245

ABSTRACT

Ruthenium (Ru)-based anticancer drugs are considered to be novel alternatives of platinum-based drugs. They exhibit potent cytotoxicity against the cancer cells and hence are useful for the treatment of cancer. Herein, the density functional theory calculations in the gas phase and aqueous media are carried out to study the reactions of two Ru(III)-based drugs such as KP1019 and KP418 with the N7 site of guanine (G), 2'-deoxyguanosine (dGua), and guanosine (Gua) to understand their reactivity against the DNA and RNA. All the reactions are found to be exothermic. The activation free energies and rate constants of these reactions indicate that KP1019 and KP418 would react with the dGua more readily than Gua. Hence, the binding of these drugs with the DNA would be more preferred as compared to RNA. It is further found that among these drugs, KP1019 would be more reactive than KP418 in agreement with the experimental observation. Thus, this study is expected to aid in the future development of potent anticancer drugs.


Subject(s)
Antineoplastic Agents , Ruthenium , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , DNA , Deoxyguanosine , Guanine/pharmacology , Guanosine/pharmacology , Indazoles , Organometallic Compounds , RNA , Ruthenium/pharmacology , Ruthenium Compounds
15.
J Thromb Haemost ; 20(11): 2465-2474, 2022 11.
Article in English | MEDLINE | ID: mdl-35950928

ABSTRACT

Platelets are the "guardians" of the blood circulatory system. At sites of vessel injury, they ensure hemostasis and promote immunity and vessel repair. However, their uncontrolled activation is one of the main drivers of thrombosis. To keep circulating platelets in a quiescent state, the endothelium releases platelet antagonists including nitric oxide (NO) that acts by stimulating the intracellular receptor guanylyl cyclase (GC). The latter produces the second messenger cyclic guanosine-3',5'-monophosphate (cGMP) that inhibits platelet activation by stimulating protein kinase G, which phosphorylates hundreds of intracellular targets. Intracellular cGMP pools are tightly regulated by a fine balance between GC and phosphodiesterases (PDEs) that are responsible for the hydrolysis of cyclic nucleotides. Phosphodiesterase type 5 (PDE5) is a cGMP-specific PDE, broadly expressed in most tissues in humans and rodents. In clinical practice, PDE5 inhibitors (PDE5i) are used as first-line therapy for erectile dysfunction, pulmonary artery hypertension, and lower urinary tract symptoms. However, several studies have shown that PDE5i may ameliorate the outcome of various other conditions, like heart failure and stroke. Interestingly, NO donors and cGMP analogs increase the capacity of anti-platelet drugs targeting the purinergic receptor type Y, subtype 12 (P2Y12) receptor to block platelet aggregation, and preclinical studies have shown that PDE5i inhibits platelet functions. This review summarizes the molecular mechanisms underlying the effect of PDE5i on platelet activation and aggregation focusing on the therapeutic potential of PDE5i in platelet disorders, and the outcomes of a combined therapy with PDE5i and NO donors to inhibit platelet activation.


Subject(s)
Nitric Oxide , Phosphodiesterase 5 Inhibitors , Humans , Male , Blood Platelets/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/pharmacology , Guanosine/metabolism , Guanosine/pharmacology , Guanylate Cyclase/metabolism , Guanylate Cyclase/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Donors/metabolism , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Phosphodiesterase 5 Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/therapeutic use , Phosphodiesterase 5 Inhibitors/metabolism , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Protein Kinases/metabolism
16.
Pharmacol Biochem Behav ; 218: 173422, 2022 07.
Article in English | MEDLINE | ID: mdl-35732211

ABSTRACT

Although the rapid-onset and sustained antidepressant responses elicited by ketamine have gained considerable attention in recent years, it has some knock-on effects that limit its widespread clinical use. Therefore, ketamine is considered the prototype for the new generation of glutamate-based rapid-acting antidepressants. Within this context, it has been demonstrated that guanosine, an endogenous guanine-based purine, has overlapping mechanisms of action with ketamine and is effective in eliciting fast antidepressant-like responses and even potentiating ketamine's actions in preclinical studies. Here, we review the recent findings regarding the ability of guanosine to produce rapid-acting antidepressant-like effects and we provide an overview of the molecular mechanisms underlying its antidepressant-like actions. Moreover, the neurobiological mechanisms underpinning the ability of guanosine in boosting the antidepressant-like and pro-synaptogenic effects elicited by ketamine are also reported. Taken together, this review opens perspectives for the use of guanosine alone or in combination with ketamine for the management of treatment-resistant depression.


Subject(s)
Depressive Disorder, Treatment-Resistant , Ketamine , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Glutamic Acid , Guanosine/pharmacology , Humans , Ketamine/pharmacology , Ketamine/therapeutic use
17.
Chem Asian J ; 17(15): e202200302, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35582887

ABSTRACT

Photothermal therapy (PTT) has drawn extensive attention owing to its noninvasive and great tissue penetration depth. However, the physical encapsulation of photothermal agents may lead to their rapid release. Dual-functional hydrogel systems that integrate functions and carriers can potentially solve this problem. In this work, we successfully developed a dual-functional guanosine(G)-based hydrogel integrating the photothermal effect and localized delivery by introducing dynamic borate ester utilizing the photothermal property of PDA-AuNPs and the self-assembly ability of G. Both in vitro and in vivo results confirmed that the GBPA hydrogel not only exhibited excellent photothermal toxicity, stability, injectability, and biocompatibility, but also possessed high photothermal antitumor activity. These results suggested that the GBPA hydrogel could be used as a dual-functional hydrogel integrating photothermal effect and localized delivery in one system, which would possibly provide a new opportunity for the design of new dual-functional hydrogels for highly efficient cancer therapy.


Subject(s)
Metal Nanoparticles , Neoplasms , Borates , Gold/pharmacology , Guanosine/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Phototherapy , Photothermal Therapy
18.
Hypertension ; 79(5): 946-956, 2022 05.
Article in English | MEDLINE | ID: mdl-35168371

ABSTRACT

BACKGROUND: We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS: To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS: Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS: Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.


Subject(s)
Hypertension , Hypotension , Animals , Blood Pressure , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP-Dependent Protein Kinases/chemistry , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Guanosine/pharmacology , Guanosine Monophosphate/pharmacology , Hypertension/drug therapy , Hypertension/genetics , Mice , Nitrogen Oxides , Protein Kinases/pharmacology
19.
Adv Sci (Weinh) ; 9(7): e2103485, 2022 03.
Article in English | MEDLINE | ID: mdl-35064773

ABSTRACT

Diabetic foot ulcers infected with antibiotic-resistant bacteria form a severe complication of diabetes. Antimicrobial-loaded hydrogels are used as a dressing for infected wounds, but the ongoing rise in the number of antimicrobial-resistant infections necessitates new, nonantibiotic based designs. Here, a guanosine-quadruplex (G4 )-hydrogel composed of guanosine, 2-formylphenylboronic acid, and putrescine is designed and used as a cascade-reaction container. The G4 -hydrogel is loaded with glucose-oxidase and hemin. The first cascade-reaction, initiated by glucose-oxidase, transforms glucose and O2  into gluconic acid and H2 O2 . In vitro, this reaction is most influential on killing Staphylococcus aureus or Pseudomonas aeruginosa in suspension, but showed limited killing of bacteria in biofilm-modes of growth. The second cascade-reaction, however, transforming H2 O2  into reactive-oxygen-species (ROS), also enhances killing of biofilm bacteria due to hemin penetration into biofilms and interaction with eDNA G-quadruplexes in the biofilm matrix. Therewith, the second cascade-reaction generates ROS close to the target bacteria, facilitating killing despite the short life-time of ROS. Healing of infected wounds in diabetic mice proceeds faster upon coverage by these G4 -hydrogels than by clinically common ciprofloxacin irrigation. Moreover, local glucose concentrations around infected wounds decrease. Concluding, a G4 -hydrogel loaded with glucose-oxidase and hemin is a good candidate for infected wound dressings, particularly in diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Wound Infection , Animals , Glucose , Guanosine/pharmacology , Humans , Hydrogels , Mice , Wound Infection/drug therapy
20.
Eur Neuropsychopharmacol ; 57: 15-29, 2022 04.
Article in English | MEDLINE | ID: mdl-35008015

ABSTRACT

The mTORC1-dependent dendritic spines formation represents a key mechanism for fast and long-lasting antidepressant responses, but it remains to be determined whether this mechanism may account for the ability of guanosine in potentiating ketamine's actions. Here, we investigated the ability of ketamine plus guanosine to elicit fast and sustained antidepressant-like and pro-synaptogenic effects in mice and the role of mTORC1 signaling in these responses. The combined administration of subthreshold doses of ketamine (0.1 mg/kg, i.p.) and guanosine (0.01 mg/kg, p.o.) caused a fast (1 h - 24 h), but not long-lasting (7 days) reduction in the immobility time in the tail suspension test. This behavioral effect was paralleled by a rapid (started in 1 h) and transient (back to baseline in 24 h) increase on BDNF, p-Akt (Ser473), p-GSK-3ß (Ser9), p-mTORC1 (Ser2448), p-p70S6K (Thr389) immunocontent in the hippocampus, but not in the prefrontal cortex. Conversely, ketamine plus guanosine increased PSD-95 and GluA1 immunocontent in the prefrontal cortex, but not the hippocampus after 1 h, whereas increased levels of these proteins in both brain structures were observed after 24 h, but these effects did not persist after 7 days. The combined administration of ketamine plus guanosine raised the dendritic spines density in the ventral hippocampal DG and prefrontal cortex after 24 h Rapamycin (0.2 nmol/site, i.c.v.) abrogated the antidepressant-like effect and pro-synaptogenic responses triggered by ketamine plus guanosine. These results indicate that guanosine may boost the antidepressant-like effect of ketamine for up to 24 h by a mTORC1-dependent mechanism.


Subject(s)
Ketamine , Animals , Antidepressive Agents , Depression/drug therapy , Depression/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Guanosine/metabolism , Guanosine/pharmacology , Hippocampus/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...